
15 Limit sets. Lyapunov functions

By this point, considering the solutions to

ẋ = f(x), x(t) ∈ U ⊆ R2, (1)

I was mostly interested in the behavior of solutions when t → ∞ (sometimes, this is called asymptotic
behavior of the solutions). It does not mean that the transient behavior of the solutions is of no
importance, but at this point I would like to concentrate on the case t → ∞. From the previous
discussion it should be clear that an equilibrium or a limit cycle can be an ultimate outcome of the
system’s dynamics. Can we have anything else? How to describe the asymptotic behavior in most
general terms? In this lecture I will try to answer these and some other questions by studying the
limit sets of the flow of (1). I will also introduce the notion of the Lyapunov function, an extremely
powerful device to analyze behavior of (1).

15.1 Limit sets and their properties

Recall that x(t;x0) denotes the solution to (1) at time t with the initial condition x(0) = x0. Consid-
ered as the mapping of U to U parameterized by the time t, it is called the flow of system (1). The
corresponding geometric object that I study is the orbit γ(x0).

Definition 1. Point x̄ is called an omega limit point of solution x(t;x0) or orbit γ(x0) if there exists
a sequence t1, . . . , tk, . . . of the time moments such that tk → ∞ as k → ∞, for which

x(tk;x0) → x̄, k → ∞

holds.
The set of all such points of x(t;x0) is called the ω-limit (or forward) set of x(t;x0) or orbit γ(x0)

and denoted ω(x0).
Similarly, for tk → −∞ an alpha limit point and α-limit (or backward) set α(x0) are defined.

Example 2. If x̂ is an equilibrium of (1) then

ω(x̂) = α(x̂) = x̂.

Example 3. An asymptotically stable limit cycle is the ω-limit set for at leat some initial conditions
(can you think of a sequence of points such that for any point on the limit cycle there is a convergent
sequence x(t;x0)?).

By the way, using the limit sets it is possible to define the limit cycle as the closed curve, which is
a limit set for some initial conditions that do not belong to the curve itself.

Example 4. Consider
ẋ = −x, x(t) ∈ R.

For the equilibrium x̂ = 0 I have that α(0) = ω(0) = 0. For any other point x ∈ R \ {0} I obviously
have

ω(x) = 0, α(x) = ∅.
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Example 5. Here is a slightly more involved example:

ṙ = r(a− r),

θ̇ = sin2 θ + (r − a)2.

Here I have three equilibria r̂0 = 0, (r̂, θ̂) = (a, 0), and (r̂, θ̂) = (a, π). All three of them are unstable.
The analysis of the phase portrait shows that the ω-limit set for most of the initial conditions is
given by the closed curve composed by two equilibria on the circle, and the heteroclinic trajectories
connecting them (recall, that an orbit is called heteroclinic if it connects two equilibria).

Therefore, in the examples I presented it is possible for the limit set of a planar system to be
an equilibrium, a limit cycle, or a closed curve that is composed of equilibria and orbits. Can it be
anything else?

Limit sets have a lot of nice properties, which I summarize in the following theorem.

Theorem 6. Limit sets are closed and invariant. If x(t;x0) is bounded (i.e., |x(t;x0)| < M for any t
for some constant M which may depend on x0), then ω(x0) and α(x0) are non-empty and connected.

I will leave the proof of this theorem to the reader. Here are a few remarks.

• The limit set is closed means that for any convergent sequence x̄k belonging to, e.g., ω(x0) the
limit limk→∞ x̄k = x̄ is also in ω(x0).

• The invariance property means that if x̄ ∈ ω(x0) then the whole orbit x(t; x̄) ∈ ω(x0).

• The fact that a bounded orbit has a non-empty limit set follows immediately from the fact that
any bounded sequence has a convergent subsequence. It also holds that ω(x0) is empty if and
only if |x(t;x0)| → ∞.

• Connectedness of ω(x0) can be proved by contradiction.

The celebrated Poincaré–Bendixson Theorem classifies the possible limit sets of planar systems.

Theorem 7 (Poincaré–Bendixson). Consider planar system (1), for which the equilibria are isolated.
If the positive orbit γ+(x0) (i.e., for t > 0) is bounded then

1. ω(x0) is an equilibrium, or

2. ω(x0) is a closed orbit, or

3. For each x̄ ∈ ω(x0), α(x̄) and ω(x̄) are equilibria.

15.2 Lyapunov functions and limit sets

In the previous subsection I discussed the limit sets. But how actually can I find them? For this I will
need the notion of the Lyapunov function. In particular, the following theorem holds.

Theorem 8. Consider an autonomous system of ODE

ẋ = f(x), x(t) ∈ U ⊆ Rd,

and let G ⊆ U . Consider function V ∈ C(1)(G;R) and the mapping t 7→ V
(
x(t;x0)

)
along the solution

x(t;x0). If the derivative of this mapping V̇ is sign definite (i.e., V̇ ≤ 0 or V̇ ≥ 0) then ω(x0) ∩ G
(and α(x0) ∩G) contained in the set {x : V̇ (x) = 0}.
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Proof. Assume that V̇ ≥ 0 (the other case is treated similarly). Let x̄ ∈ ω(x0). This means that
there is sequence (tk)

∞
k=1 such that x(tk;x0) → x̄. This means, by continuity of V̇ , that V̇ (x̄) ≥ 0. If

V̇ (x̄) = 0 then the theorem is proved. Therefore assume that

V̇ (x̄) > 0.

This implies that V
(
x(t; x̄)

)
> V (x̄). On the other hand, since V is non-decreasing along the trajec-

tories,
V
(
x(t;x0)

)
≤ V (x̄).

Consider sequence (t+tk)
∞
k=1 for some fixed t. By the properties of the solutions x(t+tk;x0) = x(t; x̄),

which together with the previous yields a contradiction V
(
x(t; x̄)

)
≤ V (x̄). Therefore, V̇ (x̄) = 0. �

Function V as in the last theorem is called a Lyapunov function (but see the next subsection).
The derivative V̇ is often called the derivative of V along the vector field f , or Lie derivative.

Example 9. Consider again the predator–prey model with intraspecific competition, in dimensionless
variables

ẋ = x(1− αx− y),

ẏ = y(−γ − βy + x).

I know from the previous analysis that for some parameter values (αγ < 1) it is possible to have a
nontrivial equilibrium x̂2 = (x̂, ŷ), which corresponds to the mutual species coexistence. I also found
that this equilibrium, when present in R2

+ is asymptotically stable. In my analysis I was not able to
completely discard the possibility of having a closed curve. This example fills this gap.

Consider function, whose form is suggested by the integral of the classical Lotka–Volterra predator–
prey model

V (x, y) = x̂ log x− x+ ŷ log y − y

and find its derivative along our vector field:

V̇ = (x̂− x)(1− αx− y) + (ŷ − y)(−γ − βy + x) = α(x̂− x)2 + β(ŷ − y)2.

For any (x, y) ∈ R2
+ V̇ is non-negative and is equal to zero only at (x̂, ŷ). Therefore, this point is the

only candidate for the ω-limit set, and therefore it is globally asymptotically stable for the system.
Sometimes the set of zeros of V̇ is large, and I would like to identify those points which are actually

in the limit sets. This can be done with

Theorem 10 (LaSalle). Let Ĝ = {x ∈ G : V̇ (x) = 0} be the set of zeros of the derivative of a
Lyapunov function along given vector field f , and let G be positive invariant. Then the orbits of the
vector field tend to the maximal invariant subset of Ĝ.

15.3 Lyapunov functions and stability of equilibria

In the previous subsection a function V was called a Lyapunov function for vector field f in the domain
G if it is sign definite in G along the orbits of f . A canonical, and slightly more stringent, definition
of Lyapunov function is as follows.
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Definition 11. Let x̂ be an equilibrium of ẋ = f(x), x(t) ∈ U ⊆ Rd. A function V ∈ C(1)(G;R),
where G is a neighborhood of x̂, is called a Lyapunov function for x̂ in G if:

• V (x̂) = 0 and V (x) > 0 for all x ∈ G \ {x̂}.

• V̇ (x) ≤ 0 for all x ∈ G.

If instead of the second condition, the condition

• V̇ (x) < 0 for all x ∈ G \ {x̂}
holds, then V is called a strict Lyapunov function.

Using this definition, it is possible to prove

Theorem 12 (Lyapunov). Let x̂ be an equilibrium of ẋ = f(x), x(t) ∈ U ⊆ Rd. If there exists a
Lyapunov function for x̂ then x̂ is stable, if there exists a strict Lyapunov function for x̂ than x̂ is
asymptotically stable.

There are no universal methods to construct Lyapunov functions, though.

Example 13. Consider first the classical Lotka–Volterra model

Ṅ = aN − bPN,

Ṗ = cPN − dP.

Recall that I was able to integrate this system, and found that the solutions are the level sets of

H(N,P ) = bP + cN − a logP − d logN.

If one considers a function

V (N,P ) = H(N,P )−H(N̂ , P̂ ), N̂ =
d

c
, P̂ =

a

b

then it can be checked that V is a Lyapunov function for (N̂ , P̂ ). Hence the equilibrium, as we already
saw, Lyapunov stable. Here, actually, V̇ ≡ 0.

Consider again the predator–prey model with intraspecific competition, in dimensionless variables

ẋ = x(1− αx− y),

ẏ = y(−γ − βy + x).

And let
H(x, y) = x̂ log x− x+ ŷ log y − y.

One can check that
V (x, y) = H(x̂, ŷ)−H(x, y)

is a strict Lyapunov function for (x̂, ŷ).

It is important to mention that Lyapunov functions allow to infer global aspects of the behavior
of the orbits. For example, the following is true.

Consider again the same system ẋ = f(x), x(t) ∈ U ⊆ Rd with an asymptotically stable equi-
librium x̂. By definition, the basin of attraction B(x̂) of x̂ is the set of initial conditions such that
x(t;x0) → x̂ for t → ∞. It can be shown that if V is a strict Lyapunov function for x̂, then the sets
Gc = {x ∈ G : V (x) ≤ c} are in the basin of attraction of x̂. In the last example, the whole R2

+ is in
the basin of attraction of (x̂, ŷ).
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